LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FOURTH SEMESTER - APRIL 2025

CH 4504 - ELECTROCHEMISTRY

	nte: 24-04-2025 Dept. No. me: 09:00 AM - 12:00 PM	Max. : 100 Mark
	SECTION A	
An		x 10 = 40)
1.	a) Describe the construction and working of a standard hydrogen electrode.	(5+5)
	b) Illustrate the significances of electrochemical series.	
2.	a) How will you determine the standard electrode potential of a zinc electrode b) Calculate the equilibrium constant for the following reaction at 25°C. The standard reduction potentials are $E_{Ag^+ Ag}^o = 0.80 V$ and $E_{Fe^{2+} Fe}^o = -0.44$ $2 \text{Ag(s)} + \text{Fe}^{2+}(\text{aq}) \rightleftharpoons 2 \text{Ag}^+(\text{aq}) + \text{Fe(s)}$.	,
3.	a) Derive Nernst equation for measuring the electrode potential.	(5+5)
	b) Explain the liquid junction potential. How does transport number of cation	and anion affect it?
4.	a) How is the pH of a solution determined using quinhydrone electrode?b) Discuss the principle of potentiometric titration.	(5+5)
5.	a) Calculate the ionic strength of 0.01 M aqueous solution of Na ₂ SO ₄ at 298 H b) The diameter of the capillary tube used in moving boundary method is 1.0 passed for 200 s is 0.01 A, the concentration of HCl is 10.0 mol m ⁻³ and 0.1 boundary, calculate the transport number of H ⁺ .	$5x10^{-5}m^2$, the study current
6.	a) How does equivalent conductance of electrolytes vary with dilution? b) Calculate the mean activity coefficient of 0.01 M NaCl solution.	(5+5)
7.	a) Describe the factors that affect the conductance.b) How is decomposition potential measured?	(5+5)
8.	Illustrate the following. a) Principle of polarography	(5+5)
	b) Concentration polarization of electrodes	
	SECTION B	
An	swer ANY THREE of the following (2)	$3 \times 20 = 60$)
10.	 a) Describe the types of electrodes with examples, electrode reactions and potential. b) Describe the construction and working of a Weston cell. Differentiate its types. (10+10) c) A solubility product of a sparingly soluble salt determined from EMF measurement? (10+10) 	
	 a) How are ΔH, ΔS, ΔG and K determined from EMF data? b) Derive an expression for the EMF of a concentration cell with transference 	e. (10+10)
	a) How is transference number of ions determined using Hittorf's method?b) State Kohlrausch's law and explain its applications.	(10+10)
	 a) Illustrate the following (i) Debye-Huckel-Onsager equation (ii) Activity and activity coefficient. b) Discuss the Debye-Huckel theory of strong electrolytes. a) Describe the following: (i) Electrochemical theory of corrosion (ii) Dropping mercury electrode. 	(10+10)
	b) Explain the following: i) Half-wave potential ii) Diffusion current	t (10+10)